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What is the relationship 
between

logic,language,computation and biology?



Classical Aspects:

Self-Reference,
Recursion,

Imaginary Values.

Symbols and 
reproducibility of

symbols.

Separation of 
object and reference.



A circle (intended to refer to distinction) 
can be regarded as
referring to itself

as a
distinction.



domain of real numbers usually assumed in working with numerical recursions. This
last example is worth comparing with the infinite nest of boxes. If we ask for a fixed
point for FðxÞ ¼ 2þ 1=x we are asking for an x such that x ¼ 2þ 1=x: Hence we
ask for x such that x *x ¼ 2xþ 1; a solution to a quadratic equation. And one
verifies that ð1þ Sqrtð2ÞÞð1þ Sqrtð2ÞÞ ¼ 2ð1þ Sqrtð2ÞÞ þ 1: Hence x ¼ 1þ
Sqrtð2Þ is an example of a fixed point for F(x).

On the other hand, following the proof of the theorem, we find that

J ¼ FðFðFð. . .ÞÞÞ ¼ 2þ 1=ð2þ 1=ð2þ 1=ð2þ %%%ÞÞÞ;
an infinite continued fraction that formally satisfies the equation J ¼ FðJÞ: In this case,
we can make numerical sense of the infinite construction. In general, we are challenged
to find a context in which the infinite concatenation of the operator makes sense.

The place where this sort of construction reaches a conceptual boundary is
met in dealing with all solutions to a quadratic equation. There we can begin
with the equation x *x ¼ axþ b with roots x ¼ ðaþ Sqrtða * aþ 4bÞÞ=2 and
x ¼ ða2 Sqrtða * aþ 4bÞÞ=2: If ða * aþ 4bÞ , 0 then the roots are imaginary.
On the other hand, we can rewrite the quadratic (dividing by x for x not zero) as
x ¼ aþ b=x ¼ fðxÞ:

Associating to this form of the quadratic the eigenform

E ¼ fðfðfðfð. . .ÞÞÞÞ;
we have

E ¼ aþ 1=ðbþ 1=ðaþ 1=ðbþ %%%ÞÞÞ with fðEÞ ¼ E:

Thus, E is a formal solution to the quadratic equation, and the consecutive terms

E1 ¼ a; E2 ¼ aþ 1=b; E3 ¼ aþ 1=ðbþ 1=aÞ; . . .
will converge to one of the roots when the roots are real, but will oscillate with no
convergence when the roots are imaginary. Nevertheless, this series and its associated
eigenform are very closely related to the complex solutions, and the eigenform provides
a conceptual center for the investigation of these relationships (Kauffman 1987, 1994).

We end this section with one more example. This is the eigenform of the Koch
fractal (Kauffman, 1987). In this case, one can symbolically write the eigenform
equation

K ¼ K{K K}K

to indicate that the Koch Fractal re-enters its own indicational space four times (i.e. it is
made up of four copies of itself, each one-third the size of the original). The curly
brackets in the center of this equation refer to the fact that the two middle copies within
the fractal are inclined with respect to one another and with respect to the two outer
copies. Figure 3 shows the geometric configuration of the re-entry.

In the geometric recursion, each line segment at a given stage is replaced by four
line segments of one-third its length, arranged according to the pattern of re-entry as
shown in Figure 3. The recursion corresponding to the Koch eigenform is shown in
Figure 4. Here we see the sequence of approximations leading to the infinite
self-reflecting eigenform that is known as the Koch snowflake fractal.
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Five stages of recursion are shown. To the eye, the last stage vividly illustrates how the
ideal fractal form contains four copies of itself, each one-third the size of the whole. The
abstract schema

K ¼ K{K K}K

for this fractal itself can be iterated to produce a “skeleton” of the geometric recursion:

Figure 3.
Geometric configuration of
the re-entry

Figure 4.
Recursion corresponding
to the Koch eigenform
which leads to the infinite
self-reflecting eigenform
(Koch snowflake fractal)
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The Framing of
Imaginary Space.
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phase-shifted from the original one by one half-period. The
juxtaposition of the these two waveforms yields a marked state.
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With this interpretation we would like to keep p o s i t i o n  as a rule
about the reentering mark. But we also note, that as a waveform
the reentering mark, taken all by itself, is indistinguishable from its
crossed form.
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One way to get partially out of this dilemma is to make two
imaginary values i and j, one for each waveform and to have the
following waveform arithmetic:
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The waveform arithmetic satisfies occultation and transposition, but
not position. It is similar to the three-values Calculus for Self-
Reference, and has a completeness theorem using these values. This
rich structure is directly related to a class of multiple valued logics

Fibonacci Form and Beyond 13
to satisfy this equation. It is akin to solving,

by attempting to create a space where “I” can be both myself and inside myself, as is trueof our psychological locus. And this can be solved by an infinite regress of Me’s inside ofMe’s.

In a similar manner, we may solve the equation for J by an infinite nest of boxes

Note that in this form of the solution, layered like an onion, the entire infinite form reentersits own indicational space. It is indeed a solution to the equation

The solution in the form

is meant to indicate how the form reenters its own indicational space. This reentry notationis due to G. Spencer-Brown. Although he did not write down the reentering mark itself inhis book Laws of Form, it is implicit in the discussion in chapter 11 of that book.It is not obvious that we should take infinite regress as a model for the way we are inthe world. Everyone has experienced being between two reflecting mirrors and theveritable infinite regress that arises at once in that situation. Physical processes can happenmore rapidly than the speed of our discursive thought, and thereby provide ground for anexcursion to infinity.
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Fixed Point and Self-Replication
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gx = F(xx)

gg = F(gg)

Church-Curry Fixed Point Theorem.

In a reflexive domain any element 
has a fixed point.

In a reflexive domain D
every element is an operator

on the domain D.
D            [D,D]



B,x B,x X,x

The von-Neumann Building Machine
can build itself.

(x is the blueprint for X)

Let b be the blueprint for B.

Then B,b builds itself.

B,b                 B,b B,b



Indicative Shift

A           B

“A refers to B.”

#A           BA
Then HVF

"HVF"

"#HVF"

After

Before

Suppose that   M           #.

Then   #M           #M.

And if  g            F#,
then #g           F#g.

self-reference

Godelian self-reference

(name) (named)



Goedelian Reference

g                  F(u)

#g                  F(g)

g                  ~B(#u)

#g                  ~B(#g)

~B(#g) asserts its own 
unprovability.

Note that the 
incompleteness
phenomenon

does not occur at
level of 

indicative shift.
It occurs at the 

cut
between formal 

system
and

observer of
formal system.

(code number) (formula)



A universal observer UO examines what is in his hand.

He sees a formal system F and wonders if perhaps 
F is the complete model of his ability to reason.

F
UO

But no, it cannot be! For UO can prove the 
incompleteness of F and so UO knows that he is 
not identical with F, just so long as UO and F are 

both consistent in their reason.



A universal observer UO examines what is in his hand.

F
UO

The UOF is not a UFO, but she is beyond 
Turing. Is the necessary cognition for this 
ability related to biology and/or (Penrose) 

new physics?



M #

# M # M 

Self Reference occurs at the Shift 
of the Name M of the 

Meta-Naming Operator #.

“ I am the 
Observed relation
Between myself

And
Observing myself.”

(Heinz von Foerster)



In a Nutshell:

Rx ---------> xx
then

RR---------->RR

and
Beware the Jabberwock!

Rx = ~xx
RR = ~RR





So far, this is the story of the 
classical logic of self-replication

and self-reference. 

We know that DNA engages
in self-replication.

How does the DNA self-rep
compare with our

familiar self-replication
at the level of logic and 

recursion?
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replication loops

DNA

DNA

DNA

topo I

topo II

topo II

Figure 1 - DNA Replication

In logic there is a level beyond the simple copying of symbols that contains a
non-trivial description of self-replication. The (von Neumann) schema is as follows:
There is a universal building machine B that can accept a text or description
x (the program) and build what the text describes. We let lowercase x denote
the description and uppercase X denote that which is described. Thus B with
x will build X. The building machine also produces an extra copy of the text
x. This is appended to the production X as X, x. Thus B, when supplied with
a description x, produces that which x describes, with a copy of its description
attached. Schematically we have the process shown below.

  � �  
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B, x ⇤⇥ B, x; X,x

Self-replication is an immediate consequence of this concept of a universal building
machine. Let b denote the text or program for the universal building machine.
Apply B to its own description.

B, b ⇤⇥ B, b; B, b

The universal building machine reproduces itself. Each copy is a universal building
machine with its own description appended. Each copy will proceed to reproduce
itself in an unending tree of duplications. In practice this duplication will continue
until all available resources are used up, or until someone removes the programs or
energy sources from the proliferating machines.

It is not necessary to go all the way to a universal building machine to establish
replication in a formal system or a cellular automaton (See the epilogue to this paper
for examples.). On the other hand, all these logical devices for replication are based
on the hardware/software or Object/Symbol distinction. It is worth looking at the
abstract form of DNA replication.

DNA consists in two strands of base-pairs wound helically around a phosphate
backbone. It is customary to call one of these strands the “Watson” strand and
the other the “Crick” strand. Abstractly we can write

DNA =< W |C >

to symbolize the binding of the two strands into the single DNA duplex. Replication
occurs via the separation of the two strands via polymerase enzyme. This separation
occurs locally and propagates. Local sectors of separation can amalgamate into
larger pieces of separation as well. Once the strands are separated, the environment
of the cell can provide each with complementary bases to form the base pairs of
new duplex DNA’s. Each strand, separated in vivo, finds its complement being
built naturally in the environment. This picture ignores the well-known topological
di culties present to the actual separation of the daughter strands.

The base pairs are AT (Adenine and Thymine) and GC (Guanine and Cyto-
sine). Thus if

< W | =< ...TTAGAATAGGTACGCG...|
then

|C >= |...AATCTTATCCATGCGC... > .

Symbolically we can oversimplify the whole process as

< W | + E ⇤⇥< W |C >= DNA

E + |C >⇤⇥< W |C >= DNA

< W |C >⇤⇥< W | + E + |C >=< W |C >< W |C >

Either half of the DNA can, with the help of the environment, become a full DNA.
We can let E ⇤⇥ |C >< W | be a symbol for the process by which the environment
supplies the complementary base pairs AG, TC to the Watson and Crick strands.

  � �  
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Self Replication Schematic

DNA is a Self-Replicating Form
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The base pairs are AT (Adenine and Thymine) and GC (Guanine and
Cytosine). Thus if

< W | =< ...TTAGAATAGGTACGCG...|
Then

|C >= |...AATCTTATCCATGCGC... > .

Symbolically we can oversimplify the whole process as

< W | + E −→< W |C >= DNA

E + |C >−→< W |C >= DNA

< W |C >−→< W | + E + |C >=< W |C >< W |C >

Either half of the DNA can, with the help of the environment, become a
full DNA. We can let E −→ |C >< W | be a symbol for the process by
which the environment supplies the complementary base pairs AG, TC to the
Watson and Crick strands. In this oversimplification we have cartooned the
environment as though it contained an already-waiting strand |C > to pair
with < W | and an already-waiting strand < W | to pair with |C > .

In fact it is the opened strands themselves that command the appearance of their
mates. They conjure up their mates from the chemical soup of the environment.

The environment E is an identity element in this algebra of cellular interac-
tion. That is, E is always in the background and can be allowed to appear
spontaneously in the cleft between Watson and Crick:

< W |C >−→< W ||C >−→< W |E|C >

−→< W ||C >< W ||C >−→< W |C >< W |C >

This is the formalism of DNA replication.

Compare this method of replication with the movements of the universal
building machine supplied with its own blueprint. Here Watson and Crick
( < W | and |C > ) are each both the machine and the blueprint for the
DNA. They are complementary blueprints, each containing the information to
reconstitute the whole molecule. They are each machines in the context of the
cellular environment, enabling the production of the DNA. This coincidence
of machine and blueprint, hardware and software is an important difference
between classical logical systems and the logical forms that arise in biology.
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ax = b(xx)

with its crucial repetition as well. In the fixed point theorem, the arrow is
replaced by an equals sign! Repetition is the core of self-replication in classical
logic. This use of repetition assumes the possibility of a copy at the syntactic
level, in order to produce a copy at the symbolic level. There is, in this pivot on
syntax, a deep relationship with other fundamental issues in logic. In particular
this same form of repetition is in back of the Cantor diagonal argument showing
that the set of subsets of a set has greater cardinality than the original set, and
it is in back of the Gödel Theorem on the incompleteness of sufficiently rich
formal systems. The pattern is also in back of the production of paradoxes
such as the Russell paradox of the set of all sets that are not members of
themselves.

There is not space here to go into all these relationships, but the Russell
paradox will give a hint of the structure. Let “ab” be interpreted as “b is a
member of a”. Then RX = ¬(XX) can be taken as the definition of a set
R such that X is a member of R exactly when it is not the case that X is
a member of X. Note the repetition of X in the definition RX = ¬(XX).
Substituting R for X we obtain RR = ¬(RR), which says that R is a member
of R exactly when it is not the case that R is a member of R. This is the Russell
paradox. From the point of view of the lambda calculus, we have found a fixed
point for negation.

Where is the repetition in the DNA self-replication? The repetition and the
replication are no longer separated. The repetition occurs not syntactically,
but directly at the point of replication. Note the device of pairing or mirror
imaging. A calls up the appearance of T and G calls up the appearance of
C. < W | calls up the appearance of |C > and |C > calls up the appearance
of < W |. Each object O calls up the appearance of its dual or paired object
O∗. O calls up O∗ and O∗ calls up O. The object that replicates is implicitly
a repetition in the form of a pairing of object and dual object.

OO∗ replicates via

O −→ OO∗

O∗ −→ OO∗

whence

OO∗ −→ O O∗ −→ OO∗ OO∗.

Where is the repetition in the 
DNA Self-Replication?
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In this duality, O* is the 
blueprint for OO* and O is  
also the blueprint for OO*.



2

In the end we arrive at a summary formalism, a chapter in boundary mathe-
matics (mathematics using directly the concept and notation of containers and
delimiters of forms - compare [3] and [11]) where there are not only containers
<>, but also extainers >< – entities open to interaction and distinguishing
the space that they are not. In this formalism we find a key for the articulation
of diverse relationships. The boundary algebra of containers and extainers is
to biologic what boolean algebra is to classical logic. Let C =<> and E =><
then EE =><><=> C < and CC =<><>=< E > Thus an extainer pro-
duces a container when it interacts with itself, and a container produces an
extainer when it interacts with itself.

The formalism of containers and extainers is a chapter in the foundations
of a symbolic language for shape and interaction. With it, we can express
the form of DNA replication succinctly as follows: Let the DNA itself be
represented as a container

DNA =<> .

We regard the two brackets of the container as representatives for the two
matched DNA strands. We let the extainer E =>< represent the cellular
environment with its supply of available base pairs (here symbolized by the
individual left and right brackets). Then when the DNA strands separate, they
encounter the matching bases from the environment and become two DNA’s.

DNA = <>−→< E >−→<><> = DNA DNA.

Life itself is about systems that search and learn and become. Perhaps a little
symbol like E =>< with the property that EE =><>< produces containers
<> and retains its own integrity in conjunction with the autonomy of <> (the
DNA) could be a step toward bringing formalism to life.

These concepts of concatenation of extainers and containers lead, in Section
6, to a new approach to the structure of and generalizations of the Temperley
Lieb algebra. In this Section we discuss how projectors in the Temperley Lieb
algebra can be regarded as topological/algebraic models of self-replication,
and we take this point of view to characterize multiplicative elements P of the
Temperley Lieb algebra such that PP = P. What emerges here is a topological
view of self-replication that is different in principle from the blueprint-driven
self-replications of logic and from the environmentally driven self-replication
described above as an abstraction of DNA action. This topological replication
is a direct descendant of the fact that you can get two sticks from one stick
by breaking it in the middle. Here we obtain more complex forms by allowing
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E is the “environment”.
E is replaced by  ><.

If <> is a container,
then >< is an extainer.

<><> = <  ><  >
>< >< = ><><



DNA = <Watson|Crick>

<Watson| Environment | Crick>

<Watson| |Crick><Watson| | Crick>

DNA DNA

DNA Self-Replication Schema

<Watson|Crick><Watson|Crick>

The DNA divides into its own 
blueprints for replication.





RD Self-Replication 
is analogous to

DNA Self-Replication.

(We explain below.)

RD = Recursive Distinguishing



A letter will receive “[“ if it is equal on the 
right and unequal on the left.

A letter will receive “]“ if it is equal on the left 
and unequal on the right.

A letter will receive “O“ if it is unequal on the 
left and unequal on the right.

...AAAAAAAABAAAAAAAA...

...= = = = = = ] O [ = = = = = = ...

...= = = = = ] O O O [ = = = = = ...

...= = = = ] O [ = ] O [ = = = = ...

Recursive Distinguishing





...AAAAAAAABAAAAAAAA...

...= = = = = = ] O [ = = = = = = ...

...= = = = = ] O O O [ = = = = = ...

...= = = = ] O [ = ] O [ = = = = ...

A single distinction (the letter B in the row of same A’s)
has been described and the description itself described

two more times.

]O[ can be regarded in the 
pattern of DNA Replication.



In the context of recursive distinguishing, recursive re-
description, a simple local distinction gives birth to an 

entity ]O[ that can reproduce itself!

...= = = = = = ] O [ = = = = = = ...

...= = = = = ] O O O [ = = = = = ...

...= = = = ] O [ = ] O [ = = = = ...

Philosophically speaking, this is the whole talk. 
The RD process is fundamental and primordial. 
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the Dirac notation of “bras” and “kets” where Dirac takes an inner product
written in the form < B|A > and breaks it up into < B | and |A > and then
makes projection operators by recombining in the opposite order as |A >< B |.
See the earlier discussion of quantum mechanics in this paper.

Each left or right bracket in itself makes a distinction. The two brackets are
distinct from one another by mirror imaging, which we take to be a notational
reflection of a fundamental process (of distinction) whereby two forms are
identical (indistinguishable) except by comparison in the space of an observer.
The observer is the distinction between the mirror images. Mirrored pairs of
individual brackets interact to form either a container

C = {}

or an extainer
E =}{.

These new forms combine to make:

CC = {}{} = {E}
and

EE =}{}{=}C{.
Two containers interact to form an extainer within container brackets. Two
extainers interact to form a container between extainer brackets. The pattern
of extainer interactions can be regarded as a formal generalization of the bra
and ket patterns of the Dirac notation that we have used in this paper both
for DNA replication and for a discussion of quantum mechanics. In the quan-
tum mechanics application {} corresponds to the inner product < A |B >, a
commuting scalar, while }{ corresponds to |A >< B |, a matrix that does not
necessarily commute with vectors or other matrices. With this application in
mind, it is natural to decide to make the container an analog of a scalar quan-
tity and let it commute with individual brackets. We then have the equation

EE =}{}{=}C{= C}{= CE.

By definition there will be no corresponding equation for CC. We adopt the
axiom that containers commute with other elements in this combinatorial alge-
bra. Containers and extainers are distinguished by this property. Containers
appear as autonomous entities and can be moved about. Extainers are open
to interaction from the outside and are sensitive to their surroundings. At this
point, we have described the basis for the formalism used in the earlier parts
of this paper.

{   }
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If we interpret E as the “environment” then the equation }{= E = 1
expresses the availability of complementary forms so that

{} −→ {E} −→ {}{}

becomes the form of DNA reproduction.

We can also regard EE = {}E as symbolic of the emergence of DNA
from the chemical substrate. Just as the formalism for reproduction ignores
the topology, this formalism for emergence ignores the formation of the DNA
backbone along which are strung the complementary base pairs. In the bio-
logical domain we are aware of levels of ignored structure.

In mathematics it is customary to stop the examination of certain issues in
order to create domains with requisite degrees of clarity. We are all aware that
the operation of collection is proscribed beyond a certain point. For example,
in set theory the Russell class R of all sets that are not members of themselves
is not itself a set. It then follows that {R}, the collection whose member is the
Russell class, is not a class (since a member of a class is a set). This means
that the construct {R} is outside of the discourse of standard set theory. This
is the limitation of expression at the “high end” of the formalism. That the
set theory has no language for discussing the structure of its own notation
is the limitation of the language at the “low end”. Mathematical users, in
speaking and analyzing the mathematical structure, and as its designers, can
speak beyond both the high and low ends.

In biology we perceive the pattern of a formal system, a system that is em-
bedded in a structure whose complexity demands the elucidation of just those
aspects of symbols and signs that are commonly ignored in the mathematical
context. Rightly these issues should be followed to their limits. The curious
thing is what peeks through when we just allow a bit of it, then return to
normal mathematical discourse. With this in mind, lets look more closely at
the algebra of containers and extainers.

Taking two basic forms of bracketing, an intricate algebra appears from
their elementary interactions:

E = ><

F = ][

G = > [

H = ] <



Simplest Replication

cut



Topological Replication
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infinitely many deformations of the identity, each giving rise to a factorization
via cutting the deformation in half, and each giving rise to distinct elements P
in the multiplicative Temperley Lieb algebra that have the property PP = P.

P  =  AB

A

B

BA  = B

A

=

== I

BA  = I

Figure 2.3 - P = AB, BA = I.

Why the topological self-rep worked.

So P = AB = AIB = ABAB = PP.



Arising From a Substrate of
Rules and Interactions

Self-Reference and Cell Self-Assembly

Entity
Linkage
Catalyst

Autopoesis.





Describing Describing
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In this 1,2,3 system of 
description, where is the self-

reference?
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22
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22 describes itself.
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121x
...

33
23

1213
...



Tangle Model: Ernst & Sumners, 1989

DNA Recombination

Topological Processes
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Figure 28 - Processive Recombination with S = [⇥1/3].

Lets see what the form of the processive recombination is for an arbitrary
sequence of recombinations. We start with

O = [a1, a2, · · · , ar�1, ar]

I = [b1, b2, · · · , bs�1, bs].

Then

K[n] = N(O + (I + [n])) = N([a1, a2, · · · , ar�1, ar] + [n + b1, b2, · · · , bs�1, bs])



We have looked at self-replication from logical,
descriptive, recursive and biological points of view.

Key aspects of coding and reference 
occur with different emphasis, and we 

see that in each domain the 
intertwining of syntax and semantics 
takes a different form in the relation 

of the way that a universe divides into 
observer and observed.



Thank you for your attention.
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Langrangian to construct the action on which the path integral is based.) One
needs to know certain aspects of classical physics to solve any given quantum
problem. The classical world is known through our biology. In this sense
biology is the foundation for physics.

A key concept in the quantum information viewpoint is the notion of the
superposition of states. If a quantum system has two distinct states |v > and
|w >, then it has infinitely many states of the form a|v > +b|w > where a and
b are complex numbers taken up to a common multiple. States are “really” in
the projective space associated with H. There is only one superposition of a
single state |v > with itself.

Dirac [5] introduced the “bra -(c)-ket” notation < A |B >= A∗B for the
inner product of complex vectors A, B ∈ H. He also separated the parts of
the bracket into the bra < A | and the ket |B > . Thus

< A |B >=< A | |B >

In this interpretation, the ket |B > is identified with the vector B ∈ H, while
the bra < A | is regarded as the element dual to A in the dual space H∗. The
dual element to A corresponds to the conjugate transpose A∗ of the vector
A, and the inner product is expressed in conventional language by the matrix
product A∗B (which is a scalar since B is a column vector). Having separated
the bra and the ket, Dirac can write the “ket-bra” |A >< B | = AB∗. In
conventional notation, the ket-bra is a matrix, not a scalar, and we have the
following formula for the square of P = |A >< B | :

P 2 = |A >< B ||A >< B | = A(B∗A)B∗ = (B∗A)AB∗ =< B |A > P.

Written entirely in Dirac notation we have

P 2 = |A >< B ||A >< B | = |A >< B |A >< B |

=< B |A > |A >< B| =< B |A > P.

The standard example is a ket-bra P = |A >< A| where < A |A >= 1 so that
P 2 = P. Then P is a projection matrix, projecting to the subspace of H that
is spanned by the vector |A >. In fact, for any vector |B > we have

P |B >= |A >< A | |B >= |A >< A |B >=< A |B > |A > .

If {|C1 >, |C2 >, · · · |Cn >} is an orthonormal basis for H, and Pi = |Ci ><
Ci|, then for any vector |A > we have

APPENDIX - Quantum Formalism
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|A >=< C1 |A > |C1 > + · · ·+ < Cn |A > |Cn > .

Hence

< B |A >=< C1 |A >< B |C1 > + · · ·+ < Cn |A >< B |Cn >

=< B |C1 >< C1 |A > + · · ·+ < B |Cn >< Cn |A >

=< B | [|C1 >< C1 | + · · · + |Cn >< Cn |] |A >

=< B | 1 |A > .

We have written this sequence of equalities from < B |A > to < B |1 |A > to
emphasize the role of the identity

Σn
k=1Pk = Σn

k=1|Ck >< Ck | = 1

so that one can write

< B |A >=< B | 1 |A >=< B |Σn
k=1|Ck >< Ck ||A >= Σn

k=1 < B |Ck >< Ck |A > .

In the quantum context one may wish to consider the probability of starting
in state |A > and ending in state |B > . The square of the probability for
this event is equal to | < B |A > |2. This can be refined if we have more
knowledge. If it is known that one can go from A to Ci (i = 1, · · · , n) and
from Ci to B and that the intermediate states |Ci > are a complete set of
orthonormal alternatives then we can assume that < Ci |Ci >= 1 for each i
and that Σi|Ci >< Ci| = 1. This identity now corresponds to the fact that 1
is the sum of the probabilities of an arbitrary state being projected into one
of these intermediate states.

If there are intermediate states between the intermediate states this formu-
lation can be continued until one is summing over all possible paths from A
to B. This becomes the path integral expression for the amplitude < B|A > .

Sum over Paths (Possibilities)



12

|A >=< C1 |A > |C1 > + · · ·+ < Cn |A > |Cn > .

Hence

< B |A >=< C1 |A >< B |C1 > + · · ·+ < Cn |A >< B |Cn >

=< B |C1 >< C1 |A > + · · ·+ < B |Cn >< Cn |A >

=< B | [|C1 >< C1 | + · · · + |Cn >< Cn |] |A >

=< B | 1 |A > .

We have written this sequence of equalities from < B |A > to < B |1 |A > to
emphasize the role of the identity

Σn
k=1Pk = Σn

k=1|Ck >< Ck | = 1

so that one can write

< B |A >=< B | 1 |A >=< B |Σn
k=1|Ck >< Ck ||A >= Σn

k=1 < B |Ck >< Ck |A > .

In the quantum context one may wish to consider the probability of starting
in state |A > and ending in state |B > . The square of the probability for
this event is equal to | < B |A > |2. This can be refined if we have more
knowledge. If it is known that one can go from A to Ci (i = 1, · · · , n) and
from Ci to B and that the intermediate states |Ci > are a complete set of
orthonormal alternatives then we can assume that < Ci |Ci >= 1 for each i
and that Σi|Ci >< Ci| = 1. This identity now corresponds to the fact that 1
is the sum of the probabilities of an arbitrary state being projected into one
of these intermediate states.

If there are intermediate states between the intermediate states this formu-
lation can be continued until one is summing over all possible paths from A
to B. This becomes the path integral expression for the amplitude < B|A > .

12

|A >=< C1 |A > |C1 > + · · ·+ < Cn |A > |Cn > .

Hence

< B |A >=< C1 |A >< B |C1 > + · · ·+ < Cn |A >< B |Cn >

=< B |C1 >< C1 |A > + · · ·+ < B |Cn >< Cn |A >

=< B | [|C1 >< C1 | + · · · + |Cn >< Cn |] |A >

=< B | 1 |A > .

We have written this sequence of equalities from < B |A > to < B |1 |A > to
emphasize the role of the identity

Σn
k=1Pk = Σn

k=1|Ck >< Ck | = 1

so that one can write

< B |A >=< B | 1 |A >=< B |Σn
k=1|Ck >< Ck ||A >= Σn

k=1 < B |Ck >< Ck |A > .

In the quantum context one may wish to consider the probability of starting
in state |A > and ending in state |B > . The square of the probability for
this event is equal to | < B |A > |2. This can be refined if we have more
knowledge. If it is known that one can go from A to Ci (i = 1, · · · , n) and
from Ci to B and that the intermediate states |Ci > are a complete set of
orthonormal alternatives then we can assume that < Ci |Ci >= 1 for each i
and that Σi|Ci >< Ci| = 1. This identity now corresponds to the fact that 1
is the sum of the probabilities of an arbitrary state being projected into one
of these intermediate states.

If there are intermediate states between the intermediate states this formu-
lation can be continued until one is summing over all possible paths from A
to B. This becomes the path integral expression for the amplitude < B|A > .
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5.1 Quantum Formalism and DNA Replication

We wish to draw attention to the remarkable fact that this formulation of
the expansion of intermediate quantum states has exactly the same pattern as
our formal summary of DNA replication. Compare them. The form of DNA
replication is shown below. Here the environment of possible base pairs is
represented by the ket-bra E = |C >< W |.

< W |C >−→< W | |C >−→< W |E|C >

−→< W | |C >< W | |C >−→< W |C >< W |C >

Here is the form of intermediate state expansion.

< B |A >−→< B | |A >−→< B | 1 |A >

−→< B | Σk |Ck >< Ck | |A >−→ Σk < B |Ck >< Ck |A > .

We compare
E = |C >< W |

and
1 = Σk |Ck >< Ck |.

That the unit 1 can be written as a sum over the intermediate states is an
expression of how the environment (in the sense of the space of possibilities)
impinges on the quantum amplitude, just as the expression of the environment
as a soup of bases ready to be paired (a classical space of possibilities) serves
as a description of the biological environment. The symbol E = |C >< W |
indicated the availability of the bases from the environment to form the com-
plementary pairs. The projection operators |Ci >< Ci | are the possibilities
for interlock of initial and final state through an intermediate possibility. In
the quantum mechanics the special pairing is not of bases but of a state and
a possible intermediate from a basis of states. It is through this common
theme of pairing that the conceptual notation of the bras and kets lets us see
a correspondence between such separate domains.

5.2 Quantum Copies are not Possible

Finally, we note that in quantum mechanics it is not possible to copy a quantum
state! This is called the no-cloning theorem of elementary quantum mechanics
[13]. Here is the proof:
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Proof of the No Cloning Theorem. In order to have a quantum process
make a copy of a quantum state we need a unitary mapping U : H ⊗ H −→
H ⊗ H where H is a complex vector space such that there is a fixed state
|X >∈ H with the property that

U(|X > |A >) = |A > |A >

for any state |A >∈ H. (|A > |B > denotes the tensor product |A > ⊗|B > .)
Let

T (|A >) = U(|X > |A >) = |A > |A > .

Note that T is a linear function of |A > . Thus we have

T |0 >= |0 > |0 >= |00 >,

T |1 >= |1 > |1 >= |11 >,

T (α|0 > +β|1 >) = (α|0 > +β|1 >)(α|0 > +β|1 >).

But

T (α|0 > +β|1 >) = α|00 > +β|11 > .

Hence

α|00 > +β|11 >= (α|0 > +β|1 >)(α|0 > +β|1 >)

= α2|00 > +β2|11 > +αβ|01 > +βα|10 >

From this it follows that αβ = 0. Since α and β are arbitrary complex numbers,
this is a contradiction. ✷

The proof of the no-cloning theorem depends crucially on the linear su-
perposition of quantum states and the linearity of quantum process. By the
time we reach the molecular level and attain the possibility of copying DNA
molecules we are copying in a quite different sense than the ideal quantum
copy that does not exist. The DNA and its copy are each quantum states,
but they are different quantum states! That we see the two DNA molecules as
identical is a function of how we filter our observations of complex and entan-
gled quantum states. Nevertheless, the identity of two DNA copies is certainly
at a deeper level than the identity of the two letters “i” in the word identity.
The latter is conventional and symbolic. The former is a matter of physics and
biochemistry.
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